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A BuildRMatrix

In the proposed algorithm, RMatrix is constructed according
to the literature [8]. In our case, the normalized RMatrix is
returned by the BuildRMatrix(·) function.

Algorithm function BuildRMatrix({ri}i=0:c−1)

// user specified per-class values; {ri},
// number of classes; c
for i = 0 to c− 1

r← ri // initialize diagonal entries
end for
sort the c classes into priority group {Pk}k=0:p−1 with
descreasing ri
C ← ∅ // the set of classes already processed
D ← 0 // the density of classes already processed
for k = 0 to c− 1

C ← C
⋃

Pk

foreach class i ∈ Pk

D ← D + 1
r2
i

end foreach
foreach class i ∈ Pk

foreach class j ∈ C
if i 6= j

r(i, j)← r(j, i)← 1√
D

end if
end foeach

end foreach
end for
rscale ← r/min(r) // element-wise division
return rscale
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B Statistical Analysis for Multi-class

Anisotropic Blue Noise Sampling

We analyzed our algorithm by calculating its power spectrum
and anisotropy according to the literature [6]. Figures 1 to
3 show the analysis results for 3-class, 5-class, and 7-class
distribution respectively. We plotted the total set and each
class. To verify the anisotropic sampling, a distribution is
warped back from a scaling projection to a unit square. In the
original distribution, we employed a simple scaling transform
from p = (x, y) to q = (u, v), i.e., q = ϕ(p), where

ϕ : (u, v) = (x/2, y). (1)

Therefore, the points can be warped back by applying a Ja-
cobian matrix expressed as

J(ϕ−1(q)) =

[
∂x
∂u

∂x
∂v

∂y
∂u

∂x
∂y

]
=

[
2 0
0 1

]
. (2)

The spectrum analysis results are shown in Figs. 1−3.
Here, simple scaling is used for the warp to test its anisotropic
and multi-class sampling properties (left to right: original
(anisotropic) samples, warped (isotropic) samples, power spec-
trum averaged over 10 runs, and the corresponding radial
mean and anisotropy plots). The total set contains approx-
imately 3800 samples, and each class contains almost equal
number of samples.

As can be seen, the total set of all cases exhibits blue
noise properties. In Fig. 1, each class also exhibits blue noise
properties. However, in Figs. 2 and 3, each class is slightly
biased due to a smaller number of points and may also suffer
from a scaling effect and constrained distribution resulting
from multi-class sampling. However, we aim for multi-class
element distribution rather than a pure sampling application,
such as anti-aliasing; thus, this is acceptable because we can
generate visually appealing results, which are shown in the
main paper.

The spectrum analysis for 16-/32-/64-classes are shown in
Fig. 4. As can be seen, our algorithm can also generate distri-
butions with blue noise properties even with a large number
of classes.
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Fig. 1 Spectrum results for 3-class distribution
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Fig. 2 Spectrum results for 5-class distribution

C Comparison of Sampling Approaches

We compare the distribution methods in the main paper.
Here, we compare our method (Fig. 1) to anisotropic sam-
pling with random class assignment (Fig. 6). We find that
there are significantly sparser and denser areas of samples in
each class in Fig. 6 than those shown in Fig. 1, which results
in fewer blue noise qualities.

We also generate a discrete element pattern using three
methods: (a) multi-class isotropic sampling [8], (b) anisotropic
sampling [6] with random class assignment, and (c) our multi-
class anisotropic sampling (Fig. 5). As can be seen, the anisotropy
of an element is ignored and the elements are not well pop-
ulated in Fig. 5a. Although Lagae and Dutré employed an
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Fig. 3 Spectrum results for 7-class distribution
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Fig. 4 Spectrum results of distribution with more classes.
Left to right: 16-/32-/64-classes. In these cases, simple scaling
is applied, as well as warp back from a scaling projection to
a unit square for spectrum and anisotropy analysis.
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(a) Multi-class (isotropic) (b) Anisotropic (random class assigned) (c) Ours

Fig. 5 Comparison of three methods: (a) multi-class isotropic sampling [8], (b) anisotropic sampling [6] with random class
assignment, and (c) our multi-class anisotropic sampling. The generated patterns are shown in the top row, and the elements
with proxy shapes are shown in the bottom row.
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Fig. 6 Spectrum results for 3-class distribution. In this case,
we first generate a distribution by anisotrpic sampling. Then,
each sample is assigned a class ID randomly while maintain-
ing a nearly equal ratio relative to the number of classes.

isotropic Poisson disk sampling approach for object distribu-
tion [4], Fig. 5 shows that isotropic Poisson disk sampling
is unsuitable for anisotropic element distribution. In Fig. 5b,
the elements are well populated; however, it does not consider
multi-class distribution as in Fig. 5a. As a result, the same
class elements are not well uniformly distributed in the whole
domain. As shown in Fig. 5c, ours is well populated and the
elements of the same class are uniformly distributed in the
domain.

D All Patterns Shown to Participants

All of the patterns shown to the participants in our experi-
ment are shown in Fig. 7. Since the previous discrete element

placement approaches lack the ability to distribute multi-class
or anisotropic elements, we compare our approach to discrete
element texture synthesis approaches.

Although the statistical test shows that our method out-
performs other methods, the results from these synthesis ap-
proaches are highly dependent on the input exemplar. As
mentioned in Section 1 of the main paper, creating a visually
appealing swatch (pattern), i.e., an exemplar, is difficult. This
indicates that the proposed method might be useful while cre-
ating a visually appealing pattern, and the resulting pattern
can be used as input exemplar for discrete texture synthesis
approaches.
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Ours (Clipped) BBT06 [1] HLT09 [2] IMIM08 [3] LGH13 [4]Ours MWT11 [6]
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(b)

(c)

(d)

(e)

(f)

Fig. 7 All patterns shown to participants in our experiment. Left to right: ours (clipped), ours, BBT06 [1], HLT09 [2],
IMIM08 [3], LGH13 [5], and MWT11 [7]. Top to bottom: (a) leaf, (b) snake, (c) balloon, (d) flower, (e) ant, and (f) wheat.
The results other than ours are courtesy Landes et al. [5].

6. Li, H., Wei, L.Y., Sander, P.V., Fu, C.W.: Anisotropic blue
noise sampling. In: ACM SIGGRAPH Asia 2010 Papers,
SIGGRAPH ASIA ’10, pp. 167:1–167:12. ACM, New York,
NY, USA (2010). DOI 10.1145/1866158.1866189. URL
http://doi.acm.org/10.1145/1866158.1866189

7. Ma, C., Wei, L.Y., Tong, X.: Discrete element tex-
tures. In: ACM SIGGRAPH 2011 Papers, SIG-
GRAPH ’11, pp. 62:1–62:10. ACM, New York, NY,
USA (2011). DOI 10.1145/1964921.1964957. URL
http://doi.acm.org/10.1145/1964921.1964957

8. Wei, L.Y.: Multi-class blue noise sam-
pling. ACM Trans. Graph. 29(4), 79:1–79:8
(2010). DOI 10.1145/1778765.1778816. URL
http://doi.acm.org/10.1145/1778765.1778816


