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Abstract

In this paper, we present a technique that maps 2D
plots to a spherical surface. We project 2D plots as
large as possible while minimizing distortions. To ac-
complish this projection, we employ elliptical grid map-
ping, which maps points on a cube to those on a sphere.
To determine the largest projection from points on the
2D plot to the cube, we find the largest projection inside
an unfolded cube pattern. The unfolded cube is then
folded to construct a cube, and the projected 2D plot is
mapped to a spherical surface. We consider all unfold-
ing patterns of a cube and determine the optimal pat-
tern for the projection. We apply the proposed mapping
to high-dimensional data visualizations. Since the tech-
nique maps a plot to a spherical surface surrounding the
user, and this covers a wider range of the user’s field of
view, our mapping provides an immersive experience to
users.

1. Introduction

Spherical displays are effective mediums for visualizing
geospatial data, such as meteorological data or human ac-
tivities on a globe. In contrast to planar displays, spherical
displays can be viewed and sensically interpreted from any
direction because of their omnidirectional property. When
a user positions at the center of a sphere, he or she can vi-
sualize data on the spherical surface surrounding the user in
virtual reality (VR) space, which is a kind of immersive VR
visualization [31]. In recent years, head-mounted displays
(HMDs) such as Oculus Rift, HTC Vive, Sony PlayStation
VR, Samsung Gear VR, Google Cardboard, and Daydream
View have become easily available and are commonly used
in VR games and other applications using HMDs. Although

CAVE [5] is also available for immersive display, it requires
a large physical space and there are significant costs for
maintaining the system. In part for these reasons, HMDs
are gaining popularity as the devices of choice for immer-
sive VR environments. When using HMDs, the visualiza-
tion covers a wider range of the user’s field of view (FOV);
hence, such a visualization provides a more immersive ex-
perience to the user. Although geospatial data can be natu-
rally illustrated on a spherical display, it is not straightfor-
ward to display plots defined on a 2D Cartesian coordinate
plane on a spherical display. Doing so inevitably introduces
distortions from projecting the 2D plots on a spherical sur-
face, and such distortions restrict the potential applications
of spherical displays of 2D data. Spherical displays still
have uses for 2D data, however; for example, we can visu-
alize various 2D plots such as scatter plots on a spherical
surface surrounding a user in an immersive VR environ-
ment, which enriches the user’s experience. We can also
exploit a wider FOV using spherical displays compared to
plots that are displayed in a 2D window.

This paper proposes a method for mapping plots defined
on a 2D Cartesian coordinate to a spherical surface. Be-
cause distortions are inevitably introduced while mapping,
we determine a mapping with minimal distortions. Our pur-
pose is to enable displays that cover a wider range of a user’s
FOV than the 2D plots from which they are constructed by
determining a mapping that minimizes distortion when a
2D plot is projected on a sufficiently large spherical sur-
face. To accomplish this, we employ cube as an interme-
diate proxy before mapping the 2D data onto a sphere be-
cause we can determine correspondences between points on
a cube and those on a sphere analytically via an elliptical
grid mapping without parameterization. Thus, we first cal-
culate the largest inscribed projection for a given 2D plot
inside an unfolded cube pattern. We then map the plot on
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Figure 1. We propose an elliptical grid mapping technique for projecting 2D plots onto spherical surfaces that are as large as possible with
minimal distortion. The images show mapping for 2D plots of dimensionality reduction results of the S-curve dataset including 2000 data
points (top) and their spherical mappings (bottom).

the cube constructed from the unfolded pattern to a sphere
using the mapping after folding the cube. Another bene-
fit of our method is that cube mapping can be implemented
more easily than mappings using other regular polyhedra.
The decision to use cube mapping will be further discussed
in Sections 4 and 8. Without loss of generality, we focus
on scatter plots as the representative example of 2D plots in
this paper.

Our contributions can be summarized as follows:

• We propose a method for mapping 2D plots (Cartesian
coordinates) to a spherical surface while introducing
minimal distortions.

• We solve the largest inscribed projection problem in an
unfolded cube pattern.

• We apply the proposed method to high-dimensional
data visualization to demonstrate the effectiveness of
our method for that application.

2. Related Work

Mappings. In computer graphics, texture mapping is used
to mapping images to a 2D shape or the surface of a 3D
model. When mapping a texture, texture coordinates are
defined on the model. Mesh parameterization defines a
mapping between two surfaces with the same topologies,
and various parameterization techniques have been pro-
posed [28]. A decaling interface was proposed by Ped-
ersen [23], and other similar approaches have been devel-
oped including lapped textures [25], texture sprites [17],
and texture mapping based on decals generated using a dis-
crete exponential map approximation [27]. However, de-
cals are small texture patches, and we wish to map plots
to large spherical surfaces, so these methods do not serve
our purpose. Carlos et al. proposed an area-preserving

parametrization for mapping planar rectangles to spherical
rectangles using an analytical function [30]. In our case, we
also employ an analytical function for our mapping. While
Carlos et al. map the unit rectangle to a spherical rectangle,
we map 2D plots with arbitrary boundary shapes to a spher-
ical surface. More applicable to our goal are the mappings
among spheres, discs [8, 6, 7, 36] and environment map-
ping [9, 10]. We will briefly describe the mappings from
squares to discs and cubes to spheres in Section 4. For a
more comprehensive overview, please refer to [14, 36].

Spherical Layouts. Spherical displays are used for infor-
mation and scientific visualizations. They are especially
suitable for the visualization of geospatial data because
data such as air flow, distribution of facilities, and earth-
quakes are already on a globe. Such phenomena are not
the only ones well-described by spherical displays. Wu
and Takatsuka proposed a method of visualizing multivari-
ate networks using a spherical self-organizing map (Geo-
SOM) [34]. Kwon et al. studied spherical graph layouts in
an immersive VR environment using an HMD [13]. The re-
sults of their user study showed that participants performed
better using the spherical graph layouts than when they used
traditional 2D graph visualizations in an immersive environ-
ment, especially for more difficult tasks and larger graphs.
In addition to GeoSOM [34], direct spherical embedding
techniques have also been proposed [33, 19, 18]. Du et al.
proposed the iSphere, focus+context technique to facilitate
the exploration of large graphs [4]. They mapped a node-
link diagram onto a Riemann sphere and orthogonally pro-
jected the sphere onto a 2D plane. Although they visualized
graphs (node-link diagrams) using spherical layouts, we can
map any 2D plot to a spherical surface. Compared to these
techniques, our method requires 2D projection before map-
ping to a spherical surface; however, our method can be ap-
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(a) 2D plot (b) Largest inscribed projection (c) Spherical mapping (d) Immersive visualization

Figure 2. Overview of the proposed technique. Given a 2D plot (a), we first compute the largest inscribed projection inside an unfolded
cube pattern (b). Then, the pattern is folded, and the projected 2D plot is on the faces of a cube. Finally, the plot is mapped from the cube to
a spherical surface (c). The proposed mapping allows a user with an HMD a more immersive experience when applied to data visualization
in a VR environment (d).

plied to inherently planar plots such as existing photographs
or drawings.

3. Overview

The overview of the proposed technique is shown in
Fig. 2. The input is a plot defined on a 2D Cartesian co-
ordinate plane (Fig. 2(a)). First, we inscribe the plot inside
an unfolded cube pattern (Fig. 2(b)), which is then folded
to construct a cube. The projected plot is now on the faces
of the cube. Finally, the points of the plot that are now on
the cube are mapped to points on a sphere (Fig. 2(c)). In
Fig. 2(d), we show an application of the mapping for data
visualization in an immersive VR environment. The result-
ing mapped plot covers a wider range of the user’s FOV and
gives users an immersive experience.

In Section 4, we describe the mapping technique. Sec-
tion 5 describes the largest inscribed projection problem and
its solution. We demonstrate the applications in Section 6,
evaluate the mapping in Section 7, and discuss our proposed
approach in Section 8, followed by the conclusion and fu-
ture work in Section 9.

4. Mapping Cube to Sphere

Mapping Square to Circle. In this section, we briefly re-
view mapping techniques used in a 2D case. Namely, to
map a point on a square with a side of length 2 (from -1
to 1) to that on a unit circle, one uses the following assign-
ment:

vsquare = [ x y ]> → vcircle. (1)

The simplest way to map points on a square to those on a
circle is to normalize vsquare:

vcircle =

[
x√

x2 + y2
y√

x2 + y2

]>
. (2)

Elliptical Grid Mapping. Nowell introduced a mapping
that converts horizontal and vertical edges of a square to
elliptical arcs inside a circle [22]. The mapping is given by
the transformation below:

vcircle =

[
x

√
1− y2

2
y

√
1− x2

2

]>
. (3)

We hereafter refer to Nowell’s mapping as elliptical grid
mapping [7].

Discussion. Lambers provided comparisons of various
mapping techniques that map a square to a disk, includ-
ing the elliptical grid, equal-area, and conformal map-
ping methods [14]. In any such comparisons, which map-
ping technique provides a better result to the user depends
strongly on the application area. However, since we focus
on mapping a 2D plot that is in the interior of a square,
elliptical grid mapping is the best available option regard-
less of the intended application of the projection [14], and
therefore, we employ the mapping. In this paper, we do
not focus on providing comprehensive comparisons of our
choice with alternative mapping techniques, although other
methods can certainly be used.

Mapping Cube to Sphere. It is straightforward to extend
the elliptical grid mapping to three dimensions, i.e., to map
points on a cube to those on a unit sphere [21], rather than
points on a square to those on a disk. That is, a point on
a cube; vcube = [ x y z ]> is mapped onto a unit sphere
vsphere, by the assignment

vsphere =


x
√
1− y2

2 −
z2

2 + y2z2

3

y
√
1− x2

2 −
z2

2 + x2z2

3

z
√
1− x2

2 −
y2

2 + x2y2

3

 . (4)

For mapping 2D Cartesian coordinates to a spherical sur-
face, we employ a cube mapping-like approach. That is,



Figure 3. Left: unfolded cubes. Right: flipped patterns. There are
twenty patterns in total (excluding the symmetrical patterns with
white face color).

given a 2D plot, we first project the plot to the inside of an
unfolded cube pattern. The unfolded cube is then folded
and an elliptical grid mapping is applied to map points on
the cube to a spherical surface. However, there are various
ways to unfold a cube, and the unfoldings do not result in
identical projections to the sphere. In particular, there are
11 unfolding patterns shown in Fig. 3 (left). By distinguish-
ing two sides of the patterns (Fig. 3 (right)), this gives 20
patterns in total. The shape of the 2D plot we start with
determines how it will best fit inside an unfolded 2D cube.
To find the unfolding pattern that best inscribes the 2D data,
we solve an optimization problem, as is described in the
next section.

5. Largest Inscribed Projection

In this section, we describe the means of inscribing a
plot of 2D data inside an unfolded cube pattern. Because
it is computationally expensive to deal with all data points
in the plot, we first compute the concave hull [20] and then
use it as a proxy polygon P for the plot (Fig. 4). We em-
pirically set k = 60 for the k-nearest neighbors used in the
method described in [20]. If a plot is given as an image
(Fig. 5 (left)), we first perform boundary tracking to extract
the boundary pixels (Fig. 5 (middle)). Because the bound-
ary may be composed of many pixels, we use the Ramer-
Douglas-Peucker algorithm [26, 3] to simplify the polygon
(Fig. 5 (right)). In the BUNNY case, although Fig. 5 (mid-
dle) contains 2559 vertices, Fig. 5 (right) contains only 72
vertices, which reduces the computational costs associated
with checking whether the polygon is contained inside an
unfolded cube polygon during the optimization step that fol-
lows.

5.1. Problem Formulation

Formally, by denoting the set of the unfolded cube poly-
gons as {C1, · · · , C20}, we would like to find the transfor-
mation function Proj(·) that projects P inside an unfolded
cube polygon Ck.

maximize
s,R,c

s

subject to Proj(P) is inside Ck,
(5)

where we decompose the transformation function Proj(·)

Figure 4. Concave hulls for various plots.

Figure 5. Left:input plot as an image. Middle: boundary tracking.
Right: simplified boundary polygon.

to a scaling factor s ∈ R, rotation matrix R ∈ SO(2), and
displaced centroid of P , c ∈ R2.

5.2. Optimization

We employ particle swarm optimization (PSO) [24] to
solve Equation (5), which solves a problem using a pop-
ulation of candidate solutions that are represented as par-
ticles. The candidates have positions and velocities, and
move around the high-dimensional search space to deter-
mine the optimal solution. The positions and velocities are
updated for each iteration by calculating the following equa-
tions:

vi(t+ 1)← wvi(t) + c1r1(x
pbest − xi(t)) + c2r2(x

gbest − xi(t)),

xi(t+ 1)← xi(t) + vi(t),
(6)

where the position of the i-th particle at time t is represented
as xi ∈ Rn and the velocity is represented as vi ∈ Rn.
The variables r1 and r2 ∈ [0, 1) are random values drawn
uniformly from [0, 1), and w, c1, and c2 are the control pa-
rameters. The position xpbest is the current best position
of the particle, and xgbest is the current best position of all
particles. The best positions are determined by calculating
an objective function. Using these local and global param-
eters, the particles communicate with one another and ex-
plore possible better solutions. We automatically determine
parameters w, c1, and c2 by employing a constriction coef-
ficient [2]. In our case, x = [s,R(θ), c] and the objective
function is defined as follows:

Objective(x) =

{
s Proj(P) is inside Ck
−∞ otherwise.

(7)

Jacobson employed a hybrid PSO by combining PSO with
binary search to solve a problem similar to ours [12]. In
our case, however, we found empirically that the hybrid
PSO with binary search is computationally more expensive
than PSO without binary search because it checks whether
Proj(P) is inside Ck several times. Without the hybridiza-



Figure 6. Largest inscribed projections for Fig 4.

Figure 7. Developments of the mean objective values and
standard deviations over iterations. #particle = 500,
#iteration = 500.

tion, we can obtain approximately optimal results within
hundreds of iterations (200− 500) in most cases.

5.3. Optimization Results and Discussions

Figure 6 shows the largest inscribed projections found
by our method for each of the polygons in Fig. 4. Depend-
ing on the shape of the hull polygons, the most appropriate
unfolded cube pattern is chosen for the projection.

Optimization Developments. We measure the objective
value of each unfolded cube pattern and shows the devel-
opments in the mean objective values and standard devi-
ations over iterations in Fig. 7. We set PSO parameters
#particle = 500 and #iteration = 500. The
curve for each plot shows how fast the optimization con-
verges. We can observe that the blue plot converges faster
than the others, and that the red and orange plots converge
especially slowly. It seems that the convergence depends on
the convexity of the concave hull. Here, the convexity of a
polygon can be measured using the ratio of the area of the
concave hull and its convex hull. The standard deviations
in each plot show the difficulty in finding the optimal val-
ues among the unfolded cube patterns because the optimal
values are different for each pattern. It also seems that vari-
ations in the standard deviation depend on the convexity of

Table 1. Timings. #particle = 500, #iteration = 500.

Hull Polygon

#vertices 41 30 33 60
Avg. Time 0.796 s 0.510 s 0.510 s 0.875 s

Figure 8. Optimization statistics for BUNNY (Fig. 5).

the polygon as well as the convergence speed.
Here, we have to note that, the above findings are infer-

ences based on the experiments. We have to conduct more
dedicated experiments for drawing any conclusions.

Timing. We implement the optimization method in C++,
and measure the computation time using an Intel Core i5
@ 2.9 GHz personal computer with 16 GB RAM. Table 1
shows the average time required for the optimization per
unfolded cube pattern for each polygon in Fig. 4. It seems
that the optimization time depends linearly on the number
of vertices of the polygon. Figure 8 shows the optimization
statistics for the 2D BUNNY plot in Fig. 5. We compare the
original polygon extracted using boundary tracking (Orig-
inal) and its simplified polygon (Simplified). As we can
see, although the obtained optimal scaling values and the
developments of the objective values are almost the same,
the original polygon required approximately 30 times more
time to optimize than the simplified one.

Comparison between Patterns. Figure 9 shows the re-
sults of optimization for 2D LUCY polygons. In this exam-
ple, we inscribe a LUCY polygon inside an unfolded cube
polygon. Although the LUCY polygons are projected with
maximum scaling in both cases, the right one occupies ap-
proximately twice as much area in the unfolded cube as the
left one. In the case of immersive spherical display appli-
cations where a user stands at the center of a surrounding
spherical display, the right projection gives a more immer-



Figure 9. Largest inscribed projections for LUCY polygons.

Figure 10. The largest inscribed projections for a single concave
hull (left) and multiple concave hulls (right).

sive projection because the projection covers a wider FOV
of the user.

Approximating with Multiple Concave Hulls. In the
case of a plot composed of clusters that are far apart from
one another, a single concave hull does not approximate the
plot well (Fig. 10 (left)). In such cases, we first compute
k-means clustering, then construct concave hulls for each
cluster, and finally, calculate the largest inscribed projection
while maintaining the center of the plot in order to retain the
relative positional relations (Fig. 10 (right)). In the current
implementation, we manually select k depending on input
plots. As can be seen in Fig. 10, the projection with mul-
tiple concave hulls occupies a larger area than that of the
single hull.

5.4. Mapping Cube Patterns to a Spherical Surface

Because we have 20 unfolded cube patterns, we define
mappings for each pattern to a spherical surface. That is, we
define the LEFT (−X), RIGHT (+X), UP (+Y ), DOWN
(−Y ), FRONT (+Z), and BACK (−Z) directions for each
face of an unfolded cube pattern. Then, a coordinate de-
fined on the face is mapped to a corresponding part of the
spherical surface using elliptical grid mapping. Figure 11
shows the mapping results of Fig. 6.

6. Applications

6.1. Visualizing High-Dimensional Data

S-curve. High-dimensional data are difficult to under-
stand. Therefore, dimensionality reduction techniques are
used to project the data to two or three dimensions. We
apply our proposed technique to the visualization of high-
dimensional data. We use the S-curve dataset, where the
S-curve is a 2D manifold embedded in 3D space. We gen-
erate 2000 sample points, and then apply dimensionality re-
duction techniques to project the data to 2D space. Fig-
ure 1 (top) shows the results of Isomap [29], multidimen-

sional scaling (MDS) [16], Laplacian Eigenmaps [1], and
t-SNE [32]. We then apply our technique to 2D plots, and
the resulting spherical plots are shown in Fig. 1 (bottom).

MNIST. We also visualize the MNIST dataset [15].
MNIST consists of images of handwritten digits. For the vi-
sualization, we randomly sample 2500 images and apply t-
SNE to project 784-dimensional feature vectors to 2D space
(Fig. 12(a)). Here, we empirically determine the number of
samples i.e., 2500 samples since it is adequate for demon-
strating our visualization. We then apply our technique to
map the 2D plot to a spherical surface. To compare the 2D
planar plot and the spherical plot, we visualize the plots in
an immersive VR environment (Fig. 12(b-c)), where a user
is positioned at the center of a unit sphere. Figure 12(b)
shows the 2D planar plot. The digit images are used as the
texture of a plane representing the data points. The centroid
of the plot is at the point of contact between the plane and
the sphere. Although we can adjust the perceived distance
between the user and the plot and the scaling, it is difficult
to locate data points in the surroundings. In contrast, be-
cause our spherical mapping maps the data on a unit sphere,
the distance between the user and any data point is constant
(Fig. 12(c)). Figure 12(c) shows planes constructed to rep-
resent the data point billboards, namely those in which all
digit images always face the user. These help a user to cor-
rectly interpret the size of the digits, which is important if
the data points are encoded in variably sized objects. Al-
though we can walk among visualized data in a VR Carte-
sian 3D space, data visualization in a Cartesian 3D space
can occlude data behind another data because of depth. In
contrast, our spherical display visualizes data on a sphere
that holds images at a constant distant from the user, and
therefore, cannot occlude data due to depth.

7. Evaluation

7.1. Comparison of Different Mapping Techniques

Qualitative Comparison. We compare different map-
ping techniques shown in Fig. 13, and find that cylindri-
cal mapping stretches and distorts the mesh/texture, es-
pecially in regions close to the poles (Fig. 13(b)). We
also observe that normalization-based mapping distorts the
mesh/textures (arms and legs in Fig. 13(c)). In contrast, al-
though some distortions are observed after our mapping, it
preserves the mesh better than other techniques.

User Study. We conduct a user study to perceptually
compare the mapping techniques. We develop an immer-
sive VR data visualization demo for displaying S-curve data
visualized by t-SNE (Fig. 1(d)) using three mapping tech-
niques: cylindrical, normalization-based (norm-based), and



Figure 11. Results of spherical mapping for the projections listed in Fig. 6.

(a) 2D plot (b) 2D plot in VR environment (c) Our spherical mapping in VR environment

Figure 12. Visualization of the MNIST dataset in a VR environment. (a) Visualization of 2500 digit images by t-SNE. (b) Viewing of (a)
in a VR environment. (c) Viewing of (a) mapped on a spherical surface by the proposed method.
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Figure 13. Comparison of mapping techniques.

the mapping that is the subject of this paper. We ask the
participants to answer the following questions:

Q1 Which mapping is more immersive?

Q2 Which mapping preserves the inter-element distances

and neighbors well?

In the demos, we display the original 2D plot and the spher-
ical plots generated by the three mapping techniques. A par-
ticipant can switch the plots at any time to compare them.
We first explain each participant the ways in which they can
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Figure 14. User study results.

interact with the plots. Each user is then asked to sit in front
of a desk wearing an Oculus Rift DK2 HMD. Because the
spherical layouts do not require positional tracking, we only
use the head tracking. We include 20 participants (twelve
males and eight females) with normal color vision in the
user study. The age of the participants ranges from 22 to
54. The mean age is 24.65 and the median is 22 years old
(standard deviation: 7.15). Most of them are graduate stu-
dents at a design school.

The results of the user survey are shown in Fig. 14. Most
of the participants answer that cylindrical mapping is the
most immersive in Q1. We believe this is because the map-
ping result of cylindrical mapping covers almost the full
range of the hemisphere, whereas the norm-based map and
our mapping cover narrower FOVs. In Q2, our mapping
technique outperforms other mapping techniques by best
preserving the characteristics of the original 2D plot. This
is an important property for a mapping technique when it
is applied to data visualization applications as it helps to
avoid misleading users and generating invalid interpreta-
tions. Although the cylindrical mapping technique heav-
ily distorts the original plot, norm-based mapping and ours
cause less distortion and better preserve the inter-element
distance and neighbors. This makes it more difficult to
distinguish between the two mapping techniques. Never-
theless, according to the result of Q2, the participants re-
gard ours to be more distance-preserving than the norm-
based mapping technique, which shows that ours outper-
forms norm-based mapping in the aspects measured.

Quantitative Comparison. Rather than relying exclu-
sively on user reports, we compare the distortions quanti-
tatively. We measure the area variances of the triangles of
the 2D polygonal mesh of BUNNY, ARMADILLO, LUCY,
and GINGERBREADMAN. The area of a triangle on a
unit sphere is equal to the spherical excess of the trian-
gle. The original 2D meshes are generated using capacity-
constrained Delaunay triangulation [35] to ensure that the
triangles of the meshes have a minimal capacity variance.
The result is shown in Table 2. Cylindrical mapping has
a larger area variance than the others, as is especially pro-
nounced in the LUCY example. Our mapping has approx-
imately ten times less area variance than normalization-
based mapping.

Table 2. Area variance comparison of different mapping tech-
niques.

Area Variance

Polygon Cylindrical Norm-based Ours

BUNNY 9.28× 10−7 4.08× 10−7 1.77× 10−8

ARMADILLO 2.37× 10−8 2.83× 10−8 1.45× 10−9

LUCY 1.63× 10−2 1.72× 10−7 1.60× 10−8

GINGERBREADMAN 6.26× 10−6 5.39× 10−6 3.45× 10−7

Figure 15. Area variance and objective value for each cube pattern.
x-labels represent cube pattern indices.

7.2. Comparison between Unfolded Cube Patterns

We also compare the area variances (less is better) and
objective values (larger is better) of the proposed mapping
for each cube pattern (Fig. 15). Since BUNNY is more con-
vex than the others, the graph is different from those of the
others. In contrast, the graphs of ARMADILLO, LUCY, and
GINGERBREADMAN show that the area variances and ob-
jective values vary depending on the cube pattern indices.
In all these cases, the graphs show that there is a tradeoff
between area variance and objective value. Although we
select the one with the largest objective value in our current
implementation, we can select the one with the least area
variance or the maximum balance for other applications, as
appropriate.

8. Discussion

We have proposed a two-step approach for mapping 2D
planar plots to a spherical surface. First, we project a 2D
plot to an unfolded cube pattern. Then, the projected plot is
mapped to a spherical surface using elliptical grid mapping.
We could have used another regular polyhedra (e.g., octahe-
dron or icosahedron) as an alternative for a cube, and such
a choice has the potential to reduce distortions when the
polyhedral is mapped to a spherical surface. However, we
employ cube since we can find a correspondence between a
point on a cube to that on a sphere analytically via elliptical
grid mapping. We do not have to pre-compute parameter-
izations to define a mapping from a 2D domain to a unit



sphere. In addition, the number of comparisons needed for
optimization of the initial projection into the unfolded poly-
hedral increases significantly when we move from the cube
to another polyhedral: while a cube has 11 essentially dif-
ferent unfoldings, a dodecahedron and an icosahedron have
43380 essentially different unfoldings [11]. If we can de-
termine the most appropriate unfolding pattern and define a
mapping between the polyhedra to a unit sphere, it would
be a better alternative to the proposed approach, but it is
computationally very expensive. On the other side, since an
octahedron has 11 essentially different unfoldings, it might
be a reasonable alternative to our choice (cube).

As we discussed in Section 4, we compare the three se-
lected mapping techniques, but this is not a comprehensive
comparison between our method and every possible well-
suited mapping technique, as such choices depend on the
area of application. As such, it is difficult to provide a gen-
eral solution. Although we focus on mapping a 2D plot to
a spherical surface as large as possible while minimizing
distortions, trying to use as much of the sphere as possi-
ble seems to be unhelpful since our FOV is limited to 120◦

in the horizontal direction with less in the vertical direction.
Rather than replacing 2D planar displays with spherical dis-
plays for data visualization and exploration, we aim to com-
bine a 2D window and a spherical layout for data explo-
ration. For example, we can use a 2D window to overview
the data, and then dive into an immersive visualization using
the proposed spherical mapping.

9. Conclusion and Future Work

This paper proposes a mapping technique that maps 2D
plots to a spherical surface. To minimize distortions, we
employ elliptical grid mapping to map points on a cube
to a spherical surface. To fill as much of a user’s FOV as
possible, we solve the largest inscribed projection problem
for a polygon approximating a given plot and an unfolded
cube pattern. We apply the proposed technique to a high-
dimensional data visualization problem.

Constructing a conformal map between a sphere and a
cube does not seems to be simple, however, if such mapping
would be constructed, it can derive a better result than that
in the proposed method in terms of distortion, and is more
suited for immersive data visualization applications.

Limitation and Future Work. As reported in Sec-
tion 5.3, solving the largest inscribed projection problem
is not a computationally demanding task, but may not be
suited for realtime mapping. In that case, direct mapping
can be better regarding the computational performance.

In addition, although we quantitatively evaluate distor-
tions in Section 7, the distortions are noticeable if we ap-
ply the mapping technique for textures (Fig. 13 (bottom)).

Figure 16. Since the red edges of the unfolded cube pattern shown
in the left figure are merged when constructing a cube, the map-
ping places both ends of the plot close (see the area enclosed by
the red rectangle in the right figure).

Therefore, further optimization is necessary when one is ap-
plying the technique described here to such applications.
Our method also may not preserve neighbors for points
close to the edges of the cube because we first project a
2D plot to an unfolded cube pattern, fold it to construct a
cube, and then map points on the cube to a spherical sur-
face. For example, in Fig. 16 and Fig. 1(a), while both ends
of the plot are far apart in the 2D plot, they are close together
in the spherical plots. Therefore, we must take care not to
mislead viewers if applying the technique for data visual-
ization. To address such problems, we can scale the plot
slightly smaller to avoid edges. Because mapping distor-
tions are inevitable, we would like to further optimize the
mapping, and conduct a task-based user study to measure
the performance of our method in applications with sensi-
tivity to this feature.
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Appendix

2D Polygonal Meshes used for Quantitative Evaluation

Figure 17. Input 2D polygonal meshes for Table 2 and Fig. 15.
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